

CHROMIUM

Biological monitoring of chromium

Identity

laonny		
Name (parent)	Chromium trioxide	Chromic (VI) acid
UN number	1463	1755
CAS number	1333-82-0	7738-94-5
Intervention value (AGW in	no AGW	no AGW
mg/m ³)		
Structure	CrO ₃	CrH ₂ O ₄

Occurrence

Chemical state (at 20°C)	Solid (crystals or powder)	Liquid
Physical appearances	Dark red, bi-pyramidal prismatic crystals, flakes or granular powder	Solution of chromium trioxide.
Industrial products	Chrome pigments, chromium plating, copper stripping, welding, corrosion inhibitor	Chromium plating

Physicochemical properties

Molecular weight	100.0	118.01
Vapor pressure (mbar at 20°C)	Negligible	Negligible
Octanol/water partition coefficient (log Po/w)	n/a	n/a
Water solubility (in g/100mL at 25 °C)	62	complete

Toxicokinetics (parent)

	·····
Uptake by inhalation	Water soluble Cr(VI) compounds enter the circulation after inhalation. The
	absorption efficiency depends on water solubility. Cr (VI) is reduced to Cr(III)
	by epithelium lining fluids [1].
Uptake by skin	Water soluble Cr(VI) compounds are readily absorbed by the intact skin (see
absorption	above) [2].
Uptake via	Uptake depends on the oxidation state, the water solubility, chemical form and
gastrointestinal tract	the gastrointestinal transit time. Approximately 10% of inorganic Cr(VI) is
	absorbed from the gut [1]; Cr(VI) is reduced to Cr(III) in the stomach [3].
Distribution	Cr is distributed throughout the body, mainly in the liver, kidney, spleen and
	lung tissue; Scarcely water soluble or insoluble Cr compounds have a
	retention time of months-years; Cr(VI) is contained inside erythrocytes after
	reduction to Cr (III); (cited by ACGIH [4]).
Metabolism	Reduction of Cr (VI) to Cr(III), by several enzymatic systems (e.g. NADPH-
	dependent P-450 reductase) and also non-enzymatically by hemoblobin,
	ascorbic acid, etc.
Excretion via lungs	n/a
Excretion via urine	Predominant excretion route: approximately 60% [1].
Excretion via feces	Bilary excretion: approximately 10% [1].

Toxicodynamics

Mechanisms of	Cr(VI) is a strong oxidizing agent, exposure can cause corrosion and irritation.
toxicity	Reactive intermediates are formed during the reduction of Cr(VI) to Cr(III) [5].
Classifications for	Cr(VI): group 1 IARC (confirmed human carcinogen) [6].
carcinogenicity	
Classifications for	Cr(VI) is able to cross the placental barrier and is teratogenic in animals [1].
reprotoxicity	
Classifications for	Dermal contact can lead to allergic eczema [7]. Inhalation of chromium can
sensitizing	lead to sensitization, inhalation can cause asthma [8].
properties	

Biological monitoring

Biomarkers	Chromium in urine	Chromium in erythrocytes	Chromium in plasma
Molecular weight	52.0	52.0	52.0
Involved enzymatic metabolism	reduction of Cr (VI) to Cr(III)	reduction of Cr(VI) to Cr(III) by ferro- hemoglobin	reduction of Cr (VI) to Cr(III)
Biological material	urine	venous blood sample	venous blood sample
Type of sample	spot urine	venous blood sample	venous blood sample
Sampling strategy	< 48 h	Up to 4 weeks after exposure	< 48 h
Excretion pattern	 Triphasic: 7 h, 15-30 d and 3-5 y (based on studies in welders) [9, 10] Biphasic: 36 d and 730 d (based on a welder accidentally exposed to welding fumes) [11] Linear elimination during lifespan of erythrocytes (120-126 days) 		- Triphasic: 7 hours, 15-30 days and 3-5 years (based on studies in welders) [9, 10]
Materials	Acid-washed plastic bottles	Trace metal-free tubes; siliconized needles	Trace metal-free tubes; siliconized needles
Transportation	Within 24 hours at 4°C	Within 24 hours at 4°C	Within 24 hours at 4°C
Storage	24 hours at 4°C in the dark; for > 6 months at -20°C	4°C until fractioning; fractioning into plasma and erythrocytes within 24 hours after collection, after fraction keep at -20°C	4°C until fractioning; fractioning into plasma and erythrocytes within 24 hours after collection, after fraction keep at -20°C
Stability	for > 6 months at -20°C	for > 6 months at -20°C	for > 6 months at -20°C
Aeasurement principle - Atomic absorption spectrometry (AAS) with Zeeman background correction [12] - High-resolution – Inductively coupled plasma-quadruple mass spectrometry (HR-ICP-MS) [13]		AAS with Zeeman background correction [12]	AAS with Zeeman background correction [12]
Limit of quantification	0.1 μg/ L (AAS) [12] 15 ng Cr / L urine (detection limit) (ICP-MS) [13]	0.15 μg/ L of plasma [12]	0.06 μg/ L of full blood [12]
Aliquot for 1 analysis	5 mL	5 mL	5 mL
Recommended adjustments	Adjustment for creatinine	Adjusted for hematocrit	Adjusted for hematocrit

Preferred units for expression of results	μg Cr/ g creatinine		μg/ L		μg/ L
Conversion factor	1 μg/g = 2.18 μmol/mol creatinine		1 μg/L = 19.2 * 10 ⁻³ μmol/L		1 μg/L = 19.2 * 10 ⁻³ μmol/L
Biological exposure value US	- End of shift at end of workweek: 25		-		-
	µg / L [4]				
	- Increase of 10 μ	g /L during			
	workshift [4]				
Biological exposure value Germany	CrO ₃ in air	Chromium (µg/L)	CrO_3 in air	Chromium (µg/L)	-
[14]	(mg/m ³)	(sampling time:	(mg/m ³)	(long-term	
		end of shift)		exposure)	
	0.03	12	0.03	9	
	0.05	20	0.05	17	
	0.08	30	0.08	25	
	0.10	40	0.10	35	
BIOMONECS background in non-	0.42 µg/g creatinine		-		-
smoking m/f adults (based P0.95)					
[15]					
Background value	0.2 – 2 μg/L [16]; cited from ACGIH		< 7 µg / L [17]		-
	[4]				
Possible confounders	Occupational exposure (chromium plating, use of chromate-containg primers, metal work in particular stainless steel				
	weiging), patients with orthopedic of orthodontistic metal implants/prostneses and active smoking				

CHROMIUM

References

- 1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for chromium. 2000.
- Corbett GE, Finley BL, Paustenbach DJ, Kerger BD. Systemic uptake of chromium in human volunteers following dermal contact with hexavalent chromium (22 mg/L). J Expo Anal Environ Epidemiol. 1997 Apr-Jun;7(2):179-89.
- 3. Finley BL, Kerger BD, Katona MW, Gargas ML, Corbett GC, Paustenbach DJ. Human ingestion of chromium (VI) in drinking water: pharmacokinetics following repeated exposure. Toxicol Appl Pharmacol. 1997 Jan;142(1):151-9.
- 4. American Conference of Industrial Hygienists (ACGIH). Chromium (VI), water-soluble fume. 2003.
- 5. Mazzer PA, Maurmann L, Bose RN. Mechanisms of DNA damage and insight into mutations by chromium(VI) in the presence of glutathione. J Inorg Biochem. 2007 Jan;101(1):44-55.
- 6. International Agency for Research on Cancer (IARC). Agents reviewed by the IARC monographs, volumes 1-99. 2008
- 7. Klaassen C. Casarett & Doull's Toxicology, the basic science of poisons: McGraw-Hill; 2001.
- 8. European Union risk assessment report: chromium trioxide, sodium chromate, sodium dichromate, ammonium dichromate and potassium dichromate. 2005.
- 9. Aitio A, Jarvisalo J, Kiilunen M, al. e. Chromium. In: Eds.: T.W. Clarkson LF, G.F.Nordberg and P.R. Sager, Plenum Press, New York,, editor. Biological Monitoring of Toxic Metals 1988, p. pp. 369-82.
- 10.Petersen R, Thomsen JF, Jorgensen NK, Mikkelsen S. Half life of chromium in serum and urine in a former plasma cutter of stainless steel. Occup Environ Med. 2000 Feb;57(2):140-2.
- 11.Schaller KH, Csanady G, Filser J, Jungert B, Drexler H. Elimination kinetics of metals after an accidental exposure to welding fumes. Int Arch Occup Environ Health. 2007 Jul;80(7):635-41.
- Scheepers PT, Heussen GA, Peer PG, Verbist K, Anzion R, Willems J. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring. Toxicol Lett. 2008 May 30;178(3):185-90.
- 13. Schramel P, Dunemann L. Aluminium, chromium, cobalt, copper, manganese, molybdenum, nickel, vanadium. Analyses of hazardous substances in biological materials: Wiley-VCH; 1999.
- 14. Deutsche Forschungsgemeinschaft (DFG). List of MAK and BAT values 2008, Commission for the investigation of health hazards of chemical compounds in the work area, Report no. 44. 2008.
- 15. Scheepers PTJ. Biomarkers of exposure to carcinogens. In: General and applied toxicology. ed: Witey and Sons. 2008.
- 16.Paustenbach DJ, Panko JM, Fredrick MM, Finley BL, Proctor DM. Urinary chromium as a biological marker of environmental exposure: what are the limitations? Regul Toxicol Pharmacol. 1997 Aug;26(1 Pt 2):S23-34.
- 17.Lauwerys R, Hoet P. Industrial chemical exposure, guidelines for biological monitoring: Lewis publishers; 2001.